Blog Posts and Research Papers
I’ve been blown away by the reception to my most recent “Deep RL Doesn’t Work Yet” blog post. In retrospect, it was a perfect storm - I spent a lot of time on the post, it was about a popular subject, most people agreed with the post’s overarching message, and yet very few people had written about it.
To any new readers I might have: prepare to be disappointed. There is a good chance I’ll never write anything as good or as popular again. It’s a weird feeling, but in the interest of avoiding the Tough Act To Follow problem, I’m planning to write shorter posts, and to release them more frequently.
To close the thread on the RL blog post, I’ll be exploring this question: What’s the difference between a blog post and a research paper?
In some sense, the deep RL blog post could have been a paper. Topic-wise, it lies somewhere between a survey paper and a policy paper, and in principle, I could have tossed it on arXiv if I wanted to.
However, I do think it needed to be a blog post.
One reason was that I knew I wanted lots of videos. It is so, so much easier to explain the behavior of these algorithms if you can actually show videos of those behaviors. Papers have videos too, but they’re often marked as supplemental material, whereas I wanted them to be front and center.
Another was that I deliberately wanted to be more colloquial. If it wasn’t clear from the Futurama meme, the post was never trying to be formal. It’s not that formal writing is a bad writing style. It’s more that there’s a time and place for it, and I found it easier to make the points I wanted to make if I let the writing be looser.
Both of those reasons played a role in my decision to write a blog post instead of paper, but they’re also both fairly superficial. The most important reasons went a bit deeper.
This is going to sound pretentious, but the medium of writing affects expectations about that writing. Messaging apps encourage short sentences, whereas email encourages longer paragraphs, and that influences the kind of messages you can get across. In a similar vein, I feel that blog posts encourage stating opinions, whereas papers encourage stating truths. This might not make sense, so let me explain.
Both blog posts and papers argue their points by presenting evidence that support their points and explaining away evidence that refutes them. That’s practically the definition of writing. However, I feel that papers in particular are held to a high standard. People expect papers to be both careful and comprehensive. Whether the average paper does this is up for debate, but it’s certainly what people aim for.
If papers are supposed to be kernels of truth about the world, then it’s only natural that people expect high-quality arguments, where every claim is backed up with evidence. But the flip side of this is that it’s harder for papers to speculate. Increasing the burden of proof restricts what you can say. For particularly nebulous topics, it can be hard to reach that burden of proof.
In contrast, blog posts, keynote talks, and so on are much more free to be opinionated. People still expect your argument to be solid, but the burden of proof for “acceptable blog post” feels lower. That makes them well-suited for writing about topics that are inherently up for debate. Topics like, say, the state of a field, and where it is, and where it’s going.
At the time of writing the deep RL post, I knew there was a chance it would be controversial. And I was fine with that, as long as the post made it clear why I arrived at the conclusions I did. (It also helped that I was the only author on the post. That way, if people hated the post, at least they’d only hate me.)
As for the target audience: I specifically wrote the post towards people who either worked on deep RL, or had a lot of interest in deep RL. If you were in neither category and liked the post anyways, consider yourself lucky. The advantage of narrow targeting is that I was free to jump directly to the points I wanted to make.
I’m starting to believe that research papers are a shockingly inefficient way to communicate new ideas. When you’re new to a field, research papers are a dense yet rewarding gold mine. The introduction talks about a problem you didn’t even know existed. The related work is a treasure trove of papers to read next. The methods and experiment sections take time to work through, but if you read them closely enough, you’ll understand not just the idea of the paper, but also all the ideas the paper builds upon.
And that’s how it starts. Then you read another paper, and another one, and soon a pattern emerges. The introduction covers a problem you’ve known about for months. The related work section cites papers you’ve already heard about, and seems to exist just to convince other researchers the authors have seen their work. The methods section is filled with preamble and boilerplate you’ve seen a billion times. I swear, every RL paper has a paragraph like this:
Let \(S\) and \(A\) be the states and actions of a Markov decision process (MDP). Policy \(\pi\) gives a distribution over actions, given state \(s\). A trajectory is a sequence (\(s_1, a_1, s_2, a_2, \ldots\)), and our objective is to learn a \(\pi\) that maximizes reward.
Depending on the paper, it’ll either explain what Q-Learning is, or explain what policy gradient is. I was not in the mood to explain either in my RL post. So I decided to assume the reader already knew how they worked, and moved on.
Did you know there’s a paper for MDP notation? It exists just so that authors can use a single sentence for their notation, instead of writing paragraphs of it. I half-suspect this was created when someone was trying to figure out how to get their paper to fit within the page limit for one of the ML conferences.
The research paper format encourages the authors to be complete. That’s fine! I don’t think papers need to change. Papers are written for everyone, from the enthusiast to the new undergrad and the tenured professor. It’s just that very few people need everything that’s in the paper. These days, I usually read papers for their key ideas, and only read more closely if I’m trying to reproduce or extend its results. Once you strip out the problem definition, skip the careful qualification to prior work, and accept the intervening details on faith, the core idea is often just a few paragraphs.
Here is a paraphrased reviewer comment from a paper I worked on: “Your 2 minute video was better at explaining your work than the paper itself.” Isn’t that interesting? It’s technically wrong, since the video didn’t mention any of the implementation details. And at the same time, I found myself agreeing with the comment.
The RL blog post argues many things, but one thing it’s shown is that papers aren’t the only way to contribute to a field. Papers matter, but they’re not the only thing that matters. Yes, blog posts are one option, but there’s also open-sourcing code, advocating for best practices, creating tutorials for newcomers, and building better infrastructure.
I went to NIPS last year. Over the course of a week, 679 papers were presented. I read some of the posters. I only remember about a third of the ones I read. The thing I remember the most? Ali Rahimi’s Test of Time talk.
Food for thought.